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Bosonic string theory in Lorentzian principal circle
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Abstract

In this note we show a bosonic conformal string theory onU(1)-bundles over AdS3. To this end,
we first look forr-elastic helices in the space AdS3, because they generate solutions of the motion
equation on backgroundsP which are principal circle-bundles over AdS3 endowed with the standard
metric or generalized Kaluza–Klein metrics. In fact, we reduce the search ofU(1)-symmetric string
configurations onP to the search ofr-elastic curves in the orbit space AdS3. © 2002 Elsevier Science
B.V. All rights reserved.
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1. Introduction

The anti-de-Sitter (AdS) space emerges in string theory with an increased interest. In
the last years, remarkable progress in superstring theory has provided new tools to explore
several important issues in understanding the quantum nature of gravity. For instance, one of
the most interesting conjectures is in the context of AdS gravity and conformal field theory
(CFT) correspondence[12]. It states that string theory in AdS background space–time is
equivalent to a supersymmetric gauge theory which lives in the boundary of the space–time.

In this note, we show wide families ofr-elastic curves in AdS3. This will enable us (via
the Kaluza–Klein mechanism), to obtain the bosonic conformal string theory associated
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with the Nambu–Goto–Poliakov (NGP) actionS = W + λ
∫

dA in Lorentzian principal
U(1)-bundles over AdS3 [15]. HereW denotes the Willmore functional defined on surfaces
W = ∫

(H 2 + R)dA, whereH andR are the mean curvature vector field of the surface
and the sectional curvature of the total space along the surface, respectively[16].

To begin with, let(M, g) be a semi-Riemannian manifold. For any natural numberr,
define on the space of inmersed curvesγ inM the action,

F r (γ ) =
∫
γ

(κ2 + λ)(r+1)/2,

whereκ is the geodesic curvature ofγ , andλ is a real number (hereλ can be regarded as a
constraint on the length ofγ or a coupling constant). The variational problems associated
with these actions were considered in[5,6]. The critical points ofF r are called ther-elastic
curvesorelasticaeof (M, g), and the Euler–Lagrange equations characterizing these curves
were computed there.

Let C2
1 be the two-dimensional complex linear space endowed with the Hermitian metric

(z, w) = −z1w̄1 + z2w̄2, wherez = (z1, z2), w = (w1, w2) ∈ C
2. The four-dimensional

pseudo-Euclidean spaceR
4
2 can be identified withC2

1 endowed with the standard pseudo-
Euclidean metric〈 , 〉 = Re( , ). The AdS space AdS3 (also denoted byH3

1 in differential
geometry) is defined as the hypersurface AdS3 = {x ∈ R

4
2 : 〈x, x〉 = −1}. The induced

metric ḡ gives to AdS3 a Lorentzian structure as a three-dimensional manifold of constant
sectional curvature−1. The unit circleS

1 regarded asU(1), acts naturally on AdS3 to
give the standard hyperbolic plane(H2, g1) of constant curvature−4 as orbits space. The
canonical projection

π1 : AdS3 → H
2

is a semi-Riemannian submersion with time-like closed geodesic fibres.
On the other hand, letH 1 be the unit circle in the Minkowski planeR2

1. H 1 is the
component of the set{(x1, x2) ∈ R

2
1 : −x2

1 + x2
2 = −1} containing(1,0). The groupH 1

acts naturally on AdS3 to give the standard(AdS2, g2) of constant curvature−4 as orbits
space. The projection

π2 : AdS3 → AdS2

is also a semi-Riemannian submersion with space-like open geodesic fibres.
Geodesics are free (i.e.λ = 0) trivial (i.e. κ ≡ 0) r-elastic curves of AdS3 for anyr. In

particular, all the fibres of the above natural Hopf fibrationsπ1 andπ2 arer-elastic curves.
Recently, Barros[1] classified all the elastic particles that propagate with constant curva-

tureκ in AdSn for arbitrary dimensionn. In fact, from the field equations associated to the
elastic energy functionalF r , it is proved that any elastic particle in AdSn must propagate
fully in some AdS3 totally geodesic in AdSn. Furthermore, the world-line solutions also
have constant torsionτ , and so they are helices in AdS3. The Euler–Lagrange equation for
helicesγ in AdS3 with curvatureκ > 0 and torsionτ = 0 to be critical points ofF r is

(r − 1)κ2 + rτ2 − r = 0.
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But this is the equation of an ellipse in the(κ, τ )-plane, and hence it provides a one-parameter
family of elastic helices, one for each point of the ellipse.

On the other hand, ifβ is a curve inH
2, the complete liftπ−1

1 (β) is a Lorentzian flat
surface known as theHopf tubeoverβ in AdS3 (or a Hopf torusif β is a closed curve).
Also, the complete liftπ−1

2 (β) of a curveβ in AdS2 is called aB-scroll [8], and it is a flat
Riemannian or Lorentzian surface according to the causal character ofβ in AdS2. But we
know from[4] that any curve in AdS3 is a helix if and only if it is a geodesic of either a
Lorentzian Hopf tube over a curve with constant curvature inH

2 or a B-scroll over a curve
with constant curvature in AdS2.

All these results can be summed up to give wide families ofr-elastic helices in the
standard AdS3. In addition, the complete moduli space ofr-elasticae with constant curvature
is obtained.

2. Elasticity of fibres in non-standard AdS3

As we have seen, all the fibres of the Hopf mapsπs, s = 1,2, are geodesics in the space
AdS3 endowed with the standard metricḡ, and hence they are (trivial)r-elasticae. Now,
π1 : (AdS3, ḡ) → (H2, g1), π2 : (AdS3, ḡ) → (AdS2, g2) are principal fibreS1-bundle
andH 1-bundle, respectively, which admit canonical principal connectionsωs, s = 1,2,
respectively, with non-trivial holonomy. For every positive smooth functionf on H

2 or
AdS2, we construct on AdS3 thegeneralized Kaluza–Klein metric

ḡf = π∗
s (gs)+ εsf 2ω∗

s (dσ
2
s ),

whereε1 = −1, ε2 = 1, and dσ 2
1 , dσ 2

2 are the standard metrics onS
1 orH 1, respectively,

and we writef instead off · πs . It is not difficult to see that

π1 : (AdS3, ḡ
f ) → (H2, g1), π2 : (AdS3, ḡ

f ) → (AdS2, g2)

are also Riemannian submersions. Then we are interested in the following natural problem:
Characterize those positive smooth functionsf on H

2 or AdS2, such that all the fibres
of π1 : (AdS3, ḡ

f ) → (H2, g) or π2 : (AdS3, ḡ
f ) → (AdS2, g2) are (non-trivial, i.e.

non-geodesics) r-elastic curves.
To begin with, we first consider the cases = 1, and define in AdS3 the time-like vector

field Vz = iz, i = √−1. Then,V is a vertical vector field andT = (1/f )V is a unit
time-like vector field in(AdS3, ḡ

f ) tangent to the fibres. Then, a standard computation
involving some well known facts from the theory of semi-Riemannian submersions (see
[13]) allows us to obtain,

∇̄f
X̄
Ȳ = ∇XY + ḡf (iX̄, Ȳ )V , (1)

∇̄f
X̄
V = ∇̄fV X̄ = iX̄, (2)

∇̄fT T = grad(f )

f
= grad(logf ), (3)
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where∇̄f and grad stand for the Levi-Civita connection and the gradient ofḡf , respectively,
∇ is the Levi-Civita connection of(H2, g1)and overbars on vector fields mean lifted objects.

Notice that from the last equation, critical points off produce geodesic fibres, and all
the fibres ofπ1 are geodesics if and only iff is a constant.

In order to compute the curvature and torsion of a fibre, write down its Frenet equations,

∇̄fT T = κN, (4)

∇̄fT N = κT + τB, (5)

∇̄fT B = −τN, (6)

whereN andB are the normal and binormal vectors of the fibre, respectively. From(3) and
(4) we have,

κ = ‖grad(f )‖
f

, N = grad(f )

‖grad(f )‖ . (7)

This means that the fibres have constant curvature. AsN is a horizontal vector, from(2)
and (6)we have,

τB = ∇̄fNT . (8)

By using a local parametrization of the Hopf tubeπ−1
1 (β), and with some similar arguments

to that of[3], it is not difficult to see thatτ = f . Then, we have obtained the following:
For any positive smooth functionf on the hyperbolic planeH2, the fibreγp = π−1

1 (p)

on a pointp ∈ H
2, which is not a critical point off is a helix with curvatureκ =

‖grad(f )(p)‖/f (p) and torsionτ = f (p).
Now, the Euler–Lagrange equation of the actionF r is

(r + 1)(κ2 + λ)(r−1)/2R̄f (∇̄fT T , T )T − ∇̄fT [(κ2 + λ)(r−1)/2((2r + 1)κ2 − λ)T ]

+(r + 1)∇̄fT ∇̄fT [(κ2 + λ)(r−1)/2∇̄fT T ] = 0,

whereR̄f is the curvature tensor of(AdS3, ḡ
f ). If we restrict the attention to free elastic

fibres and use the above Frenet equations, the motion equation reduces to

κr [(r + 1)R̄f (N, T )T − (rκ2 + (r + 1)τ2)N ] = 0. (9)

From this equation we see that on critical points off , the fibres are geodesics, and so,
r-elastic curves for anyr. Now, we suppose thatf is free of critical points (i.e.κ = 0). The
term on the curvature tensor is

R̄f (N, T )T =
(
N(κ)+ τ2 + N(f )

f
κ

)
+ κ ∇̄fNN.

SinceN and∇̄fNN are orthogonal vector fields,Eq. (9)splits up into the following:

∇̄fNN = 0, (10)

(r + 1)N(κ)+ (r + 1)
N(f )

f
κ − rκ2 = 0. (11)
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We only have to substituteκ = N(f )/f in the last equation, to give

(r + 1)fN(N(f ))− r(N(f ))2 = 0. (12)

With the appropriate changes, all the above considerations can be repeated for the second
Hopf mapπ2 : AdS3 → AdS2. Indeed, the curvature, torsion, and normal vector of a fibre
are given by

κ = −ε2‖grad(f )‖
f

, τ = f, N = grad(f )

‖grad(f )‖ ,

respectively, andε2 = 1 or−1 according whether grad(f ) is a space-like or time-like vector
field on AdS2. Consequently, we have obtained the following:

For any positive smooth functionf onAdS2, the fibreγp = π−1
2 (p) on a pointp ∈ AdS2,

which is not a critical point off is a helix with curvatureκ = −ε2(‖grad(f )(p)‖/f (p))
and torsionτ = f (p).

It is not difficult to see that with suitable first order boundary data, the Euler–Lagrange
equation of theF r -dynamic is,

(r+1)(ε2κ
2+λ)(r−1)/2R̄f (∇̄fT T , T )T+∇̄fT [(ε2κ

2+λ)(r−1)/2((2r + 1)ε2κ
2 − λ)T ]

+(r + 1)∇̄fT ∇̄fT [(ε2κ
2 + λ)(r−1)/2 ∇̄fT T ] = 0.

Some substitutions and considerations similar to theπ1-case on this equation allow us to
get just the sameEqs. (10) and (12). Therefore, we state the following result:

Let f a positive smooth function onH2 or AdS2. Then, all the fibres ofπs, s = 1,2, are
r-elastic curves in(AdS3, ḡ

f ) if and only if

1. the unitary fieldN = grad(f )/‖grad(f )‖ defines a unit speed geodesic flow onAdS3,
2. along this N-flow, f evolves according to

(r + 1)f N(N(f ))− r(N(f ))2 = 0.

3. Bosonic string theory in circle bundles over AdS3

It is known that the first fundamental group of AdS3 is isomorphic to the groupZ. Then,
for each monomorphismφ : Z → S

1 we can construct[9] a principal circle bundle

p : P → AdS3,

with flat connectionθ . Now, for a given metrich in AdS3, we consider the Kaluza–Klein
metric inP , h̄ = p∗(h)+ θ∗(dt2), where dt2 is the standard metric in the unit circle. The
mapp becomes then a Riemannian submersion.

In the Lorentz space(P, h̄) we have the bosonic conformal string theory associated to
the combined NGP action[15],

S =W + λ
∫

dA =
∫
(H 2 + R + λ)dA,
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whereW = ∫
(H 2 + R)dA is the Willmore action on surfaces defined inSection 1. This

Willmore action is invariant under conformal changes of the metrich̄ in P [16], and it was
generalized ton-dimensional submanifolds[7]. The critical points ofW are theWillmore
surfacesin (P, h̄). When(P, h̄) is flat, the actionS is given byS = ∫

(H 2 + λ), and it
coincides with the classical NGP action[10,11,15].

On the other hand, in order to obtain all possibleU(1)-invariant configurations of
NGP string theory in(P, h̄), we first characterize those surfaces in(P, h̄) which are
U(1)-invariant. It is not difficult to see that given a curveγ in the orbit space AdS3, then
p−1(γ ) is aU(1)-invariant surface in(P, h̄). The converse of this assertion also holds, i.e.
given aU(1)-invariant surfaceM in P , there exists an immersed curveγ in the orbit space
AdS3 such thatM = p−1(γ ). Besides,M is an embedded surface inP if and only if the
curveγ has no self-intersections. As a consequence, the space ofU(1)-invariant surfaces
of (P, h̄) can be identified with the manifold of curves in AdS3.

Now, we can obtain string configurations associated to the actionS which have cer-
tain degree of symmetry. To be more precise, the symmetry induced from the gauge
groupU(1). At this point we recall an useful argument due to Palais[14] known as the
principle of symmetric criticality. This principle is the key argument to exploit the ex-
istence of symmetries (if they exist) to solve problems in mathematics and physics. For
the sake of simplicity we resume the formulation of this principle in the following way:
the critical points of the actionS defined on the whole spaceΩ of surfaces which are
U(1)-symmetric, are the critical points ofS but restricted to the submanifoldΩU(1) of
U(1)-symmetric surfaces. Since we are assuming thatU(1) preserves the actionS, we ap-
ply the principle of symmetric criticality. To obtain thatM = p−1(γ ) is a solution of the
Euler–Lagrange equation associated toS defined onΩ, it is enough to take variations of
M in ΩU(1).

To compute this restriction, we can apply a result of[2] to see that the mean curvatureH
ofM = p−1(γ ) in (P, h̄) and the curvatureκ of γ in (AdS3, h) are related by

H 2 = 1
4k

2. (13)

AsR = 0, if we put (13) in the actionS defined in,U(1), we see that it is a multiple of the
action

F1 =
∫
(k2 + λ)ds,

defined on the space of curves inmersed in the orbit space(AdS3, h).
The above considerations, allow us to state the following result:
AnU(1)-invariant world-sheetM = p−1(γ ) is a configuration of NGP string theory in

(P, h̄), if and only ifγ is a1-elastic curve inAdS3, i.e. a critical point of the elastic-energy
actionF1.

This result can be considered as a reduction of symmetry method for string configurations.
It can be also interpreted as a kind of holographic principle, which relate symmetric soliton
configurations of bosonic string theories to classical particles that evolve alongr-elastic
world-lines in orbit spaces (AdS3) obtained when reduce the gauge symmetry.

As an application of the results obtained inSections 1 and 2, we can exhibit a wide family
of specific soliton solutions to the string theory in(P, h̄), by taking either
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1. h̄ = p∗(ḡ)+ θ∗(dt2), or
2. h̄ = p∗(ḡf )+ θ∗(dt2),

where(ḡf ) is the generalized Kaluza–Klein metric on AdS3 overH2 or AdS2.
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