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Abstract

In this note we show a bosonic conformal string theoryiqft)-bundles over Ad§ To this end,
we first look forr-elastic helices in the space Ag®ecause they generate solutions of the motion
equation on backgroundswhich are principal circle-bundles over Agi&ndowed with the standard
metric or generalized Kaluza—Klein metrics. In fact, we reduce the seatétilpfsymmetric string
configurations orP to the search of-elastic curves in the orbit space Ag1® 2002 Elsevier Science
B.V. All rights reserved.
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1. Introduction

The anti-de-Sitter (AdS) space emerges in string theory with an increased interest. In
the last years, remarkable progress in superstring theory has provided new tools to explore
several importantissues in understanding the quantum nature of gravity. For instance, one of
the most interesting conjectures is in the context of AdS gravity and conformal field theory
(CFT) correspondendd 2]. It states that string theory in AdS background space-time is
equivalent to a supersymmetric gauge theory which lives in the boundary of the space—time.

In this note, we show wide families efelastic curves in Ad$ This will enable us (via
the Kaluza—Klein mechanism), to obtain the bosonic conformal string theory associated
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with the Nambu—Goto—Poliakov (NGP) actiéh= W + 1 [ dA in Lorentzian principal
U (1)-bundles over Ad$[15]. HereWV denotes the Willmore functional defined on surfaces
W = [(H?+ R)dA, whereH and R are the mean curvature vector field of the surface
and the sectional curvature of the total space along the surface, respddiBjely

To begin with, let(M, g) be a semi-Riemannian manifold. For any natural number
define on the space of inmersed curyeis M the action,

Fy)= / (k2 4 1) D2,
14

wherex is the geodesic curvature of andx is a real number (herecan be regarded as a
constraint on the length of or a coupling constant). The variational problems associated
with these actions were considered3r6]. The critical points ofF" are called the-elastic
curvesor elasticaeof (M, g), and the Euler—Lagrange equations characterizing these curves
were computed there.

Let(C% be the two-dimensional complex linear space endowed with the Hermitian metric
(z, w) = —z1W1 + 22W2, Wherez = (z1, z2), w = (w1, w2) € C2. The four-dimensional
pseudo-Euclidean spa% can be identified with:% endowed with the standard pseudo-
Euclidean metri¢, ) = Re(, ). The AdS space AdSalso denoted bﬁf in differential
geometry) is defined as the hypersurface AdS{x € R‘zl . {x,x) = —1}. The induced
metric g gives to AdS a Lorentzian structure as a three-dimensional manifold of constant
sectional curvature-1. The unit circleS! regarded ag/(1), acts naturally on Ad$to
give the standard hyperbolic plaf&?, g1) of constant curvature-4 as orbits space. The
canonical projection

710 AdS; — H?

is a semi-Riemannian submersion with time-like closed geodesic fibres.

On the other hand, let/! be the unit circle in the Minkowski plan2. H? is the
component of the setx1, x2) € RZ : —x? + x2 = —1} containing(1, 0). The groupH*
acts naturally on Adgto give the standardAdS,, g2) of constant curvature-4 as orbits
space. The projection

7o AdS3 — AdS,

is also a semi-Riemannian submersion with space-like open geodesic fibres.

Geodesics are free (i.2.= 0) trivial (i.e.x = 0) r-elastic curves of Ad$for anyr. In
particular, all the fibres of the above natural Hopf fibratiaagndrno arer-elastic curves.

Recently, Barro§l] classified all the elastic particles that propagate with constant curva-
turex in AdS, for arbitrary dimensiom. In fact, from the field equations associated to the
elastic energy functionat”, it is proved that any elastic particle in Ag&wust propagate
fully in some AdS totally geodesic in Ads Furthermore, the world-line solutions also
have constant torsion, and so they are helices in AgSThe Euler—Lagrange equation for
helicesy in AdSz with curvaturec > 0 and torsiorr # 0 to be critical points ofF" is

r—Dk2+rt2—r=0.
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Butthisisthe equation of an ellipse inthe 7)-plane, and hence it provides a one-parameter
family of elastic helices, one for each point of the ellipse.

On the other hand, i is a curve inHZ, the complete Iiftnl_l(ﬂ) is a Lorentzian flat
surface known as thEopf tubeover g in AdSz (or aHopf torusif g is a closed curve).
Also, the complete Iiﬂnz‘l(ﬁ) of a curvep in AdS; is called aB-scroll[8], and it is a flat
Riemannian or Lorentzian surface according to the causal charaggand¥dS,. But we
know from[4] that any curve in AdSis a helix if and only if it is a geodesic of either a
Lorentzian Hopf tube over a curve with constant curvatuiéror a B-scroll over a curve
with constant curvature in AgS

All these results can be summed up to give wide families-efastic helices in the
standard Ad& In addition, the complete moduli space-edlasticae with constant curvature
is obtained.

2. Elasticity of fibresin non-standard AdSs

As we have seen, all the fibres of the Hopf mapss = 1, 2, are geodesics in the space
AdS3 endowed with the standard metgc and hence they are (triviat}elasticae. Now,
71 (AdSs, §) — (H?, g1), 72 : (AdSs, §) — (AdS,, go) are principal fibreS!-bundle
and H1-bundle, respectively, which admit canonical principal connections = 1, 2,
respectively, with non-trivial holonomy. For every positive smooth functfoon H2 or
AdS,, we construct on Ad$the generalized Kaluza—Klein metric

gf = n:(gs) + Esfzw:(dasz),

wheres; = —1, ¢5 = 1, and &2, d022 are the standard metrics 64 or H1, respectively,
and we writef instead off - ;. It is not difficult to see that

7 (AdSs, ) — (H2, g1),  m2: (AdSs, g7) — (AS,, g2)

are also Riemannian submersions. Then we are interested in the following natural problem:
Characterize those positive smooth functighen H? or AdS,, such that all the fibres
of 11 : (AdSs, /) — (HZ, g) or o : (AdSs, /) — (AdSy, g2) are (non-trivial, i.e.
non-geodesigs--elastic curves
To begin with, we first consider the case= 1, and define in Ad$the time-like vector
field V, = iz,i = +/—1. Then,V is a vertical vector field and” = (1/f)V is a unit
time-like vector field in(AdSg, g/) tangent to the fibres. Then, a standard computation
involving some well known facts from the theory of semi-Riemannian submersions (see
[13]) allows us to obtain,

VIV =VxY +2/ (X, DV, (1)
VIv=V{x =ix, @
5 f _ gradf)

Vi T 7 = gradlog 1), 3)
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whereV/ and grad stand for the Levi-Civita connection and the gradiept pfespectively,
V is the Levi-Civita connection affl2, g1) and overbars on vector fields mean lifted objects.
Notice that from the last equation, critical points pforoduce geodesic fibres, and all
the fibres ofr; are geodesics if and only jf is a constant.
In order to compute the curvature and torsion of a fibre, write down its Frenet equations,

VIT = kN, 4)
VIN =«T + 1B, (5)
VIB =—1N, (6)

whereN andB are the normal and binormal vectors of the fibre, respectively. F8y@ind
(4) we have,

_ligrad /)l _gradf)
K=~ N=—>"—"+",
f ligrad f)l

This means that the fibres have constant curvatureVAs a horizontal vector, froni2)
and (6)we have,

B =V/T. (8)

()

By using a local parametrization of the Hopf tublél(ﬁ), and with some similar arguments

to that of{3], it is not difficult to see that = f. Then, we have obtained the following:
For any positive smooth functiofi on the hyperbolic plan&l?, the fibrey, = nfl(p)

on a pointp e H?, which is not a critical point off is a helix with curvaturec =

ligrad /) (p)II/f (p) and torsiont = f(p).
Now, the Euler—Lagrange equation of the actiBhis

r + D+ 0VRRITIT, TYT — VL [0% + 0 V/2(2r 4+ 1ic? — W) T]
+r 4+ DV VI[P + 0V T =0,

whereR/ is the curvature tensor ¢AdSg, /). If we restrict the attention to free elastic
fibres and use the above Frenet equations, the motion equation reduces to

«"[r + DRI (N, T)T — (re® + (r + )T?)N] = 0. (9)
From this equation we see that on critical pointsfgfthe fibres are geodesics, and so,

r-elastic curves for any. Now, we suppose thgt s free of critical points (i.ex # 0). The
term on the curvature tensor is

RI(N, )T = (N(K) +7%+ @x) + 1 VIN.

SinceN and?;\;N are orthogonal vector fieldgg. (9)splits up into the following:
ViN =0, (10)

r+DNK) + (r + 1) N;f) 2

Kk —rk=0. (12)
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We only have to substitute = N (f)/f in the last equation, to give
(r + DINN () = r(N(f))* = 0. (12)

With the appropriate changes, all the above considerations can be repeated for the second
Hopf mapr; : AdSz — AdS;. Indeed, the curvature, torsion, and normal vector of a fibre
are given by

__ligrad f)ll . _gradf)

—E&y—, T = f, N = —_—,
f llgrad /)l
respectively, anéy = 1 or—1 according whether grag) is a space-like or time-like vector
field on AdS. Consequently, we have obtained the following:

For any positive smooth functioghonAdS,, the fibrey,, = ﬂz_l(p) onapointp € AdSp,
which is not a critical point off is a helix with curvaturec = —ea(|lgrad /) (p)II/f (p))
and torsiont = f(p).

It is not difficult to see that with suitable first order boundary data, the Euler—Lagrange
equation of theF"-dynamic is,

(r+1) (s2124+2) V2RI (VL T, T)T+V L [(e2c24+1) D22 + Dear® — M T]
+r + DYV [(ek? + 1) V2¥]T] = 0.
Some substitutions and considerations similar tostixease on this equation allow us to
get just the samEgs. (10) and (12)Therefore, we state the following result:

Let f a positive smooth function diZ2 or AdS,. Then, all the fibres of,, s = 1, 2, are
r-elastic curves ifAdSg, g/) if and only if

1. the unitary fieldV = grad f)/||grad f)| defines a unit speed geodesic flowAuits,
2. along this N-flow, f evolves according to

r + DEN(N(f)) — r(N(f)?* =0.

3. Bosonic string theory in circle bundles over AdSs

It is known that the first fundamental group of A€liS isomorphic to the grou. Then,
for each monomorphism : Z — S we can construd®] a principal circle bundle

p: P — AdS;,

with flat connectioré. Now, for a given metrid: in AdSz, we consider the Kaluza—Klein
metric in P, h = p*(h) + 6*(dr?), where d? is the standard metric in the unit circle. The
map p becomes then a Riemannian submersion.

In the Lorentz spacéP, i) we have the bosonic conformal string theory associated to
the combined NGP actigi5],

S=W+A/dA=/(H2+R+/\)dA,
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whereW = f(H2 + R) dA is the Willmore action on surfaces definedSection 1 This
Willmore action is invariant under conformal changes of the métiic P [16], and it was
generalized ta-dimensional submanifoldd]. The critical points oV are theWillmore
surfacesin (P, h). When(P, h) is flat, the actionS is given byS = [(H? + 1), and it
coincides with the classical NGP actifit0,11,15]

On the other hand, in order to obtain all possiltl€l)-invariant configurations of
NGP string theory in(P, k), we first characterize those surfaces(i, ) which are
U (D)-invariant. It is not difficult to see that given a curyein the orbit space Ad$ then
p~1(y) is aU (1)-invariant surface iriP, i). The converse of this assertion also holds, i.e.
given aU (1)-invariant surface in P, there exists an immersed cunvén the orbit space
AdS; such thatM = p~1(y). BesidesM is an embedded surface mif and only if the
curvey has no self-intersections. As a consequence, the spdéélpfinvariant surfaces
of (P, ) can be identified with the manifold of curves in AgS

Now, we can obtain string configurations associated to the a&liarhich have cer-
tain degree of symmetry. To be more precise, the symmetry induced from the gauge
group U (1). At this point we recall an useful argument due to Palai§ known as the
principle of symmetric criticality This principle is the key argument to exploit the ex-
istence of symmetries (if they exist) to solve problems in mathematics and physics. For
the sake of simplicity we resume the formulation of this principle in the following way:
the critical points of the actiors defined on the whole spage of surfaces which are
U (1)-symmetric, are the critical points & but restricted to the submanifol@y 1) of
U (1)-symmetric surfacesince we are assuming tha(1) preserves the actia$), we ap-
ply the principle of symmetric criticality. To obtain thaf = p~1(y) is a solution of the
Euler—Lagrange equation associatedtdefined ong, it is enough to take variations of
Min Quq).

To compute this restriction, we can apply a resulfto see that the mean curvatuie
of M = p~1(y) in (P, h) and the curvature of y in (AdSg, /) are related by

H? = 112 (13)

As R = 0, if we put (13) in the actios defined inQy (1), we see that it is a multiple of the
action

Fl= /(k2+k) ds,

defined on the space of curves inmersed in the orbit sp&d8s, /).

The above considerations, allow us to state the following result:

AnU (1)-invariant world-sheet = p~1(y) is a configuration of NGP string theory in
(P, h), ifand only ify is a1-elastic curve ilAdSg, i.e. a critical point of the elastic-energy
action F1,

This result can be considered as a reduction of symmetry method for string configurations.
It can be also interpreted as a kind of holographic principle, which relate symmetric soliton
configurations of bosonic string theories to classical particles that evolve aletagtic
world-lines in orbit spaces (Adobtained when reduce the gauge symmetry.

As an application of the results obtainedsactions 1 and,2ve can exhibit a wide family
of specific soliton solutions to the string theory(iR, /), by taking either
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1. h = p*(§) +6*(dr?), or
2. = p*@g)) +6*(d?),

where(g/) is the generalized Kaluza—Klein metric on Ag@erH? or AdS.
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